Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cancer Cell Int ; 24(1): 136, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627665

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) is a significant endogenous mediator that has been implicated in the progression of various forms of cancer including breast cancer (BC). Cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) are the three principal mammalian enzymes responsible for H2S production. Overexpression of CBS, CSE and 3MST was found to be associated with poor prognosis of BC patients. Moreover, H2S was linked to an immune-suppressive tumor microenvironment in BC. Recently it was observed that BC cells, in response to single or dual inhibition of H2S synthesizing enzymes, develop an escape mechanism by overexpressing alternative sources of H2S generation. Thus, the aim of this work is to escape the H2S compensatory mechanism by pan repressing the three enzymes using microRNAs (miRNAs) and to investigate their impact on the oncogenic and immunogenic profile of BC cells. METHODS: BC female patients (n = 25) were recruited. In-silico analysis was used to identify miRNAs targeting CBS, CSE, and 3MST. MDA-MB-231 cells were cultured and transfected using oligonucleotides. Total RNA was extracted using Biazol, reverse transcribed and quantified using qRT-PCR. H2S levels were measured using AzMc assay. BC hallmarks were assessed using trans-well migration, wound healing, MTT, and colony forming assays. RESULTS: miR-193a and miR-548c were validated by eight different bioinformatics software to simultaneously target CBS, CSE and 3MST. MiR-193a and miR-548c were significantly downregulated in BC tissues compared to their non-cancerous counterparts. Ectopic expression of miR-193a and miR-548c in MDA-MB-231 TNBC cells resulted in a marked repression of CBS, CSE, and 3MST transcript and protein levels, a significant decrease in H2S levels, reduction in cellular viability, inhibition of migration and colony forming ability, repression of immune-suppressor proteins GAL3 GAL9, and CD155 and upregulation of the immunostimulatory MICA and MICB proteins. CONCLUSION: This study sheds the light onto miR-193a and miR-548c as potential pan-repressors of the H2S synthesizing enzymes. and identifies them as novel tumor suppressor and immunomodulatory miRNAs in TNBC.

2.
Noncoding RNA ; 10(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38250807

RESUMEN

Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.

3.
Oncoimmunology ; 13(1): 2286820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170044

RESUMEN

Although immune-based therapies have revolutionized the management of cancer, novel approaches are urgently needed to improve their outcome. We investigated the role of endogenous steroids in the resistance to cancer immunotherapy, as these have strong immunomodulatory functions. Using a publicly available database, we found that the intratumoral expression of 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1), which regenerates inactive glucocorticoids into active glucocorticoids, was associated with poor clinical outcome and correlated with immunosuppressive gene signatures in patients with renal cell carcinoma (RCC). HSD11B1 was mainly expressed in tumor-infiltrating immune myeloid cells as seen by immunohistochemistry in RCC patient samples. Using peripheral blood mononuclear cells from healthy donors or immune cells isolated from the tumor of RCC patients, we showed that the pharmacological inhibition of HSD11B1 improved the response to the immune checkpoint inhibitor anti-PD-1. In a subcutaneous mouse model of renal cancer, the combination of an HSD11B1 inhibitor with anti-PD-1 treatment increased the proportion of tumor-infiltrating dendritic cells. In an intrarenal mouse tumor model, HSD11B1 inhibition increased the survival of mice treated with anti-PD-1. In addition, inhibition of HSD11B1 sensitized renal tumors in mice to immunotherapy with resiquimod, a Toll-like receptor 7 agonist. Mechanistically, we demonstrated that HSD11B1 inhibition combined with resiquimod increased T cell-mediated cytotoxicity to tumor cells by stimulating the antigen-presenting capacity of dendritic cells. In conclusion, these results support the use of HSD11B1 inhibitors to improve the outcome of immunotherapy in renal cancer and highlight the role of the endogenous glucocorticoid metabolism in the efficacy of immunotherapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Glucocorticoides/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Leucocitos Mononucleares/metabolismo , Neoplasias Renales/tratamiento farmacológico , Inmunidad , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo
4.
Heliyon ; 9(10): e21063, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916110

RESUMEN

Introduction: Hydrogen sulfide (H2S) has been recently scrutinized for its critical role in aggravating breast cancer (BC) tumorigenicity. Several cancers aberrantly express H2S synthesizing enzymes; Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE). However, their levels and interdependence in BC require further studies. Objectives: Firstly, this study aimed to demonstrate a comparative expression profile of H2S synthesizing enzymes in BC vs normal tissue. Moreover, to investigate the reciprocal relationship between CBS and CSE and highlight the importance of dual targeting. Finally, to search for a valid dual repressor of the H2S synthesizing enzymes that could cease H2S production and reduce TNBC pathogenicity. Methods: Pairwise analysis of tumor vs. normal tissues of 40 BC patients was carried out. The TNBC cell line MDA-MB-231 was transfected with oligonucleotides to study the H2S mediated molecular mechanisms. In silico screening was performed to identify dual regulator(s) for CBS and CSE. Gene expression analysis was performed using qRT-PCR and was confirmed on protein level using Western blot. TNBC hallmarks were evaluated using MTT, migration, and clonogenicity assays. H2S levels were detected using a AzMc fluorescent probe. Results: BC tissues exhibited elevated levels of both CBS and CSE. Interestingly, upon CBS knockdown, CSE levels increased compensating for H2S production in TNBC cells, underlining the importance of dually targeting both enzymes in TNBC. In silico screening suggested miR-939-5p as a regulator of both CBS and CSE with high binding scores. Low expression levels of miR-939-5p were found in BC tissues, especially the aggressive subtypes. Ectopic expression of miR-939-5p significantly repressed CBS and CSE transcript and protein levels, diminished H2S production and attenuated TNBC hallmarks. Moreover, it improved the immune surveillance potency of TNBC cells through up regulating the NKG2D ligands, MICB and ULBP2 and reducing the immune suppressive cytokine IL-10. Conclusion: This study sheds light on the reciprocal relationship between CBS and CSE and on the importance of their dual targeting, particularly in TNBC. It also postulates miR-939-5p as a potent dual repressor for CBS and CSE overcoming their redundancy in H2S production, a mechanism that can potentially attenuate TNBC oncogenicity and improves the immunogenic response.

5.
Antioxidants (Basel) ; 12(3)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36978895

RESUMEN

Cystathionine ß-synthase (CBS), CSE (cystathionine γ-lyase) and 3-mercaptopyruvate sulfurtransferase (3-MST) have emerged as three significant sources of hydrogen sulfide (H2S) in various forms of mammalian cancer. Here, we investigated the functional role of CBS' and 3-MST's catalytic activity in the murine breast cancer cell line EO771. The CBS/CSE inhibitor aminooxyacetic acid (AOAA) and the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) were used to assess the role of endogenous H2S in the modulation of breast cancer cell proliferation, migration, bioenergetics and viability in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). CBS and 3-MST, as well as expression were detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that EO771 cells express CBS, CSE and 3-MST protein, as well as several enzymes involved in H2S degradation (SQR, TST, and ETHE1). Pharmacological inhibition of CBS or 3-MST inhibited H2S production, suppressed cellular bioenergetics and attenuated cell proliferation. Cell migration was only inhibited by the 3-MST inhibitor, but not the CBS/CSE inhibitor. Inhibition of CBS/CSE of 3-MST did not significantly affect basal cell viability; inhibition of 3-MST (but not of CBS/CSE) slightly enhanced the cytotoxic effects of oxidative stress (hydrogen peroxide challenge). From these findings, we conclude that endogenous H2S, generated by 3-MST and to a lower degree by CBS/CSE, significantly contributes to the maintenance of bioenergetics, proliferation and migration in murine breast cancer cells and may also exert a minor role as a cytoprotectant.

6.
J Control Release ; 351: 989-1002, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36202154

RESUMEN

Inflammation is required for protective responses against pathogens and is thus essential for survival, but sustained inflammation can lead to diseases, such as atherosclerosis and cancer. Two important mediators of inflammation are the cytokines IL-1ß and IL-18, which are produced by myeloid cells of the immune system, including macrophages. These cytokines are released into the extracellular space through pores formed in the plasma membrane by the oligomerized protein gasdermin D (GSDMD). Necrosulfonamide (NSA) was recently identified as an effective GSDMD inhibitor and represents a promising therapeutic agent in GSDMD-dependent inflammatory diseases. Here, we targeted NSA to both mouse and human macrophages by using three different types of porous nanoparticles (NP), i.e. mesoporous silica (MSN), porous crosslinked cyclodextrin carriers (CD-NP), and a mesoporous magnesium-phosphate carrier (MPC-NP), all displaying high loading capacities for this hydrophobic drug. Cellular uptake and intracellular NSA delivery were tracked in time-lapse experiments by live-cell, high-throughput fluorescence microscopy, demonstrating rapid nanoparticle uptake and effective targeted delivery of NSA to phagocytic cells. Notably, a strong cytostatic effect was observed when a macrophage cell line was exposed to free NSA. In contrast, cell growth was much less affected when NSA was delivered via the nanoparticle carriers. Utilizing NSA-loaded nanoparticles, a successful concentration-dependent suppression of IL-1ß secretion from freshly differentiated primary murine and human macrophages was observed. Functional assays showed the strongest suppressive effect on human macrophages when using CD-NP for NSA delivery, followed by MSN-NP. In contrast, MPC-NP completely blocked the metabolic activity in macrophages when loaded with NSA. This study demonstrates the potential of porous nanoparticles for the effective delivery of hydrophobic drugs to macrophages in order to suppress inflammatory responses.


Asunto(s)
Macrófagos , Nanopartículas , Humanos , Ratones , Animales , Porosidad , Nanopartículas/química , Dióxido de Silicio/química , Inflamación/metabolismo
7.
ACS Nano ; 16(11): 18119-18132, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36301574

RESUMEN

Engineered gold nanoparticles (GNPs) have become a useful tool in various therapeutic and diagnostic applications. Uncertainty remains regarding the possible impact of GNPs on the immune system. In this regard, we investigated the interactions of polymer-coated GNPs with B cells and their functions in mice. Surprisingly, we observed that polymer-coated GNPs mainly interact with the recently identified subpopulation of B lymphocytes named age-associated B cells (ABCs). Importantly, we also showed that GNPs did not affect cell viability or the percentages of other B cell populations in different organs. Furthermore, GNPs did not activate B cell innate-like immune responses in any of the tested conditions, nor did they impair adaptive B cell responses in immunized mice. Together, these data provide an important contribution to the otherwise limited knowledge about GNP interference with B cell immune function, and demonstrate that GNPs represent a safe tool to target ABCs in vivo for potential clinical applications.


Asunto(s)
Oro , Nanopartículas del Metal , Ratones , Animales , Supervivencia Celular , Polietilenglicoles , Polímeros
8.
Cytokine Growth Factor Rev ; 62: 1-14, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34620560

RESUMEN

The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1ß, IL-1α, IL-18, IL-33, IL-36α, IL-36ß, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.


Asunto(s)
Citocinas , Neoplasias , Humanos , Inmunoterapia , Inflamación , Interleucinas , Neoplasias/tratamiento farmacológico
9.
Eur J Immunol ; 51(8): 1980-1991, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34060652

RESUMEN

High mobility group box-1 protein (HMGB1) is an alarmin that, once released, promotes inflammatory responses, alone and as a complex with the chemokine CXCL12. Here, we report that the HMGB1-CXCL12 complex plays an essential role also in homeostasis by controlling the migration of B lymphocytes. We show that extracellular HMGB1 is critical for the CXCL12-dependent egress of B cells from the Peyer's patches (PP). This promigratory function of the complex was restricted to the PPs, since HMGB1 was not required for B-cell migratory processes in other locations. Accordingly, we detected higher constitutive levels of the HMGB1-CXCL12 complex in PPs than in other lymphoid organs. HMGB1-CXCL12 in vivo inhibition was associated with a reduced basal IgA production in the gut. Collectively, our results demonstrate a role for the HMGB1-CXCL12 complex in orchestrating B-cell trafficking in homeostasis, and provide a novel target to control lymphocyte migration in mucosal immunity.


Asunto(s)
Linfocitos B/metabolismo , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Inmunidad Mucosa/inmunología , Ganglios Linfáticos Agregados/metabolismo , Animales , Linfocitos B/inmunología , Quimiocina CXCL12/inmunología , Quimiotaxis de Leucocito/inmunología , Proteína HMGB1/inmunología , Homeostasis/inmunología , Ratones , Ratones Endogámicos C57BL , Ganglios Linfáticos Agregados/inmunología
10.
ACS Nano ; 15(3): 4450-4466, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33648336

RESUMEN

Nanoparticle-based delivery systems for cancer immunotherapies aim to improve the safety and efficacy of these treatments through local delivery to specialized antigen-presenting cells (APCs). Multifunctional mesoporous silica nanoparticles (MSNs), with their large surface areas, their tunable particle and pore sizes, and their spatially controlled functionalization, represent a safe and versatile carrier system. In this study, we demonstrate the potential of MSNs as a pH-responsive drug carrier system for the anticancer immune-stimulant R848 (resiquimod), a synthetic Toll-like receptor 7 and 8 agonist. Equipped with a biotin-avidin cap, the tailor-made nanoparticles showed efficient stimuli-responsive release of their R848 cargo in an environmental pH of 5.5 or below. We showed that the MSNs loaded with R848 were rapidly taken up by APCs into the acidic environment of the lysosome and that they potently activated the immune cells. Upon subcutaneous injection into mice, the particles accumulated in migratory dendritic cells (DCs) in the draining lymph nodes, where they strongly enhanced the activation of the DCs. Furthermore, simultaneous delivery of the model antigen OVA and the adjuvant R848 by MSNs resulted in an augmented antigen-specific T-cell response. The MSNs significantly improved the pharmacokinetic profile of R848 in mice, as the half-life of the drug was increased 6-fold, and at the same time, the systemic exposure was reduced. In summary, we demonstrate that MSNs represent a promising tool for targeted delivery of the immune modulator R848 to APCs and hold considerable potential as a carrier for cancer vaccines.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Imidazoles , Inmunidad , Ratones , Porosidad
11.
Int J Nanomedicine ; 15: 1267-1281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161457

RESUMEN

BACKGROUND: Joint arthroplasty has improved the quality of life of patients worldwide, but infections of the prosthesis are frequent and cause significant morbidity. Antimicrobial coatings for implants promise to prevent these infections. METHODS: We have synthesized nanocapsules of titanium dioxide in amorphous or anatase form containing silver as antibacterial agent and tested their impact on bacterial growth. Furthermore, we explored the possible effect of the nanocapsules on the immune system. First, we studied their uptake into macrophages using a combination of electron microscopy and energy-dispersive spectroscopy. Second, we exposed immune cells to the nanocapsules and checked their activation state by flow cytometry and enzyme-linked immunosorbent assay. RESULTS: Silver-containing titanium dioxide nanocapsules show strong antimicrobial activity against both E. coli and S. aureus and even against a multidrug-resistant strain of S. aureus. We could demonstrate the presence of the nanocapsules in macrophages, but, importantly, the nanocapsules did not affect cell viability and did not activate proinflammatory responses at doses up to 20 µg/mL. CONCLUSION: Our bactericidal silver-containing titanium dioxide nanocapsules fulfill important prerequisites for biomedical use and represent a promising material for the coating of artificial implants.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanocápsulas/química , Animales , Materiales Biocompatibles Revestidos/química , Escherichia coli/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Nanocápsulas/uso terapéutico , Plata/química , Plata/farmacocinética , Staphylococcus aureus/efectos de los fármacos , Titanio/química
12.
Pharmacol Res ; 154: 104192, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836160

RESUMEN

Cancer immunotherapy has come of age with the advent of immune checkpoint inhibitors. In this article we review how agonists for receptors of the innate immune system, the Toll-like receptors and the RIG-I-like receptors, impact anticancer immune responses. Treatment with these agonists enhances the activity of anticancer effector cells, such as cytotoxic T cells and NK cells, and at the same time blocks the activity of immunosuppressive cell types such as regulatory T cells and myeloid-derived suppressor cells. These compounds also impact the recruitment of immune cells to the tumor. The phenomena of pattern-recognition receptor tolerance and reprogramming and their implications for immunotherapy are discussed. Finally, novel delivery systems that target the immune-stimulating drugs to the tumor or the tumor-draining lymph nodes to enhance their efficacy and safety are presented.


Asunto(s)
Inmunoterapia , Neoplasias/terapia , Receptores Inmunológicos/agonistas , Receptores Toll-Like/agonistas , Animales , Proteína 58 DEAD Box/inmunología , Humanos , Neoplasias/inmunología , Receptores Inmunológicos/inmunología , Receptores Toll-Like/inmunología
13.
ACS Nano ; 13(6): 6790-6800, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31117377

RESUMEN

Gold nanoparticles (GNPs) are intended for use within a variety of biomedical applications due to their physicochemical properties. Although, in general, biocompatibility of GNPs with immune cells such as macrophages and dendritic cells is well established, the impact of GNPs on B lymphocyte immune function remains to be determined. Since B lymphocytes play an important role in health and disease, the suitability of GNPs as a B cell-targeting tool is of high relevance. Thus, we provide information on the interactions of GNPs with B lymphocytes. Herein, we exposed freshly isolated human B lymphocytes to a set of well-characterized and biomedically relevant GNPs with distinct surface (polyethylene glycol (PEG), PEG/poly(vinyl alcohol) (PEG/PVA)) and shape (spheres, rods) characteristics. Polymer-coated GNPs poorly interacted with B lymphocytes, in contrast to uncoated GNPs. Importantly, none of the GNPs significantly affected cell viability, even at the highest concentration of 20 µg/mL over a 24 h suspension exposure period. Furthermore, none of the nanosphere formulations affected the expression of activation markers (CD69, CD86, MHC II) of the naive B lymphocytes, nor did they cause an increase in the secretion of pro-inflammatory cytokines ( i.e. , IL-6, IL-1ß). However, the absence of polymer coating on the sphere GNPs and the rod shape caused a decrease in IL-6 cytokine production by activated B lymphocytes, suggesting a functional impairment. With these findings, the present study contributes imperative knowledge toward the safe-by-design approaches being conducted to benefit the development of nanomaterials, specifically those as theranostic tools.


Asunto(s)
Linfocitos B/efectos de los fármacos , Inmunidad Innata , Nanosferas/toxicidad , Linfocitos B/inmunología , Células Cultivadas , Oro/química , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Nanosferas/química , Polietilenglicoles/química , Alcohol Polivinílico/química
14.
Eur J Pharm Biopharm ; 139: 253-261, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981947

RESUMEN

Resiquimod (R848), a member of the imidazoquinoline family, is a Toll-like receptor 7/8 agonist with high potency for cancer immunotherapy. However, tolerance induction and adverse effects limit its development as a drug. Encapsulation in a polymer matrix can circumvent these limitations, as shown in our formerly published approach where R848 was loaded into polylactic acid (PLA)-based nanoparticles (NP). Although the results were encouraging, low rates of encapsulation and rapid release of the drug were observed. In this study, we present a new strategy using mixed NP from modified linear PLA in order to improve the encapsulation and modulate the release profile of R848. Modified PLA polymers were designed and synthesized by microwave-assisted ring opening polymerization of d,l-lactide, using polyethylene glycol as initiator to increase the hydrophilic properties of the polymer or linear saturated aliphatic chains (C8 or C20) to increase the affinity with hydrophobic R848. NP were prepared by solvent evaporation method, leading to particles of 205-288 nm loaded with either R848 or DiO as a tracking agent. The release profile showed longer retention of R848 at both neutral and acidic pH for NP from grafted polymers. Upon exposure to phagocytic immune cells, NP were actively taken up by the cells and no impact on cell viability was observed, independently of the constitutive polymer. All R848-loaded NP activated macrophages to secrete interleukin-6, demonstrating that the drug cargo was immunologically active. Importantly, macrophage activation by NP-delivered R848 was slower than with free R848, in accordance with the in vitro release profiles. Thus, NP prepared from modified PLA polymers showed no signs of toxicity to immune cells and efficiently delivered their immunoactive cargo in a delayed manner. This delivery strategy may enhance the efficacy and safety of small-molecule immunostimulants.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Portadores de Fármacos/química , Imidazoles/administración & dosificación , Neoplasias/tratamiento farmacológico , Poliésteres/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Inmunoterapia/métodos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Neoplasias/inmunología , Tamaño de la Partícula , Cultivo Primario de Células
15.
J Exp Med ; 216(5): 1170-1181, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910796

RESUMEN

Chemokines have crucial roles in organ development and orchestration of leukocyte migration. The chemokine CCL22 is expressed constitutively at high levels in the lymph node, but the functional significance of this expression is so far unknown. Studying a newly established CCL22-deficient mouse, we demonstrate that CCL22 expression by dendritic cells (DCs) promotes the formation of cell-cell contacts and interaction with regulatory T cells (T reg) through their CCR4 receptor. Vaccination of CCL22-deficient mice led to excessive T cell responses that were also observed when wild-type mice were vaccinated using CCL22-deficient DCs. Tumor-bearing mice with CCL22 deficiency showed prolonged survival upon vaccination, and further, CCL22-deficient mice had increased susceptibility to inflammatory disease. In conclusion, we identify the CCL22-CCR4 axis as an immune checkpoint that is crucial for the control of T cell immunity.


Asunto(s)
Células de la Médula Ósea/inmunología , Comunicación Celular/inmunología , Quimiocina CCL22/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Línea Celular Tumoral , Movimiento Celular , Quimiocina CCL22/genética , Células HEK293 , Humanos , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR4/metabolismo , Trasplante Homólogo
16.
Chimia (Aarau) ; 73(1): 69-72, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814002

RESUMEN

Prof. Bourquin and her group focus on novel bioinspired strategies for the targeting of the immune system to treat cancer. The group investigates how nanoparticles of different types can be used to mimic bacteria or viruses in order to trigger immunity in cancer patients. The nanoparticles are first screened for potential toxicity or functional effects on immune cells. They are then loaded with immune-modulating drugs and selected for their capacity to trigger immune responses. Finally, their potential to block tumor growth is examined. This article describes how bioengineered particles made from spider silk can serve as vaccine, how gold nanoparticles coated with an amphiphilic ligand shell can transport highly effective immunomodulatory molecules to the tumor-draining lymph nodes, and how to screen particle interactions with immune cells in a standardized manner.


Asunto(s)
Nanopartículas , Neoplasias , Oro , Humanos , Inmunoterapia , Ganglios Linfáticos , Neoplasias/terapia
17.
Biomaterials ; 190-191: 111-120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30415018

RESUMEN

Although immunotherapy shows great promise for the long-term control of cancer, many tumors still fail to respond to treatment. To improve the outcome, the delivery of immunostimulants to the lymph nodes draining the tumor, where the antitumor immune response is initiated, is key. Efforts to use nanoparticles as carriers for cancer immunotherapy have generally required targeting agents and chemical modification of the drug, and have unfortunately resulted in low delivery and therapeutic efficiency. Here, we report on the efficacy of gold nanoparticles with approximately 5 nm hydrodynamic diameter coated with a mixture of 1-octanethiol and 11-mercaptoundecanesulfonic acid for the delivery of an immunostimulatory TLR7 ligand to tumor-draining lymph nodes. The drug was loaded without modification through nonspecific adsorption into the ligand shell of the nanoparticles, taking advantage of their amphiphilic nature. After loading, nanoparticles retained their stability in solution without significant premature release of the drug, and the drug cargo was immunologically active. Upon subcutaneous injection into tumor-bearing mice, the drug-loaded particles were rapidly transported to the tumor-draining lymph nodes. There, they induced a local immune activation and fostered a cytotoxic T-cell response that was specific for the tumor. Importantly, the particle-delivered TLR7 ligand blocked the growth of large established tumors and significantly prolonged survival compared to the free form of the drug. Thus, we demonstrate for the first time that nanoparticle delivery of a TLR7 immunostimulant to the tumor-draining lymph nodes enhances antitumor immunity and improves the outcome of cancer immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Neoplasias del Colon/terapia , Portadores de Fármacos/química , Oro/química , Nanopartículas del Metal/química , Receptor Toll-Like 7/agonistas , Adyuvantes Inmunológicos/uso terapéutico , Animales , Línea Celular , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunoterapia , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ratones Endogámicos C57BL , Receptor Toll-Like 7/inmunología
18.
PLoS Biol ; 16(9): e2006989, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30188886

RESUMEN

Most bacteria swim in liquid environments by rotating one or several flagella. The long external filament of the flagellum is connected to a membrane-embedded basal body by a flexible universal joint, the hook, which allows the transmission of motor torque to the filament. The length of the hook is controlled on a nanometer scale by a sophisticated molecular ruler mechanism. However, why its length is stringently controlled has remained elusive. We engineered and studied a diverse set of hook-length variants of Salmonella enterica. Measurements of plate-assay motility, single-cell swimming speed, and directional persistence in quasi-2D and population-averaged swimming speed and body angular velocity in 3D revealed that the motility performance is optimal around the wild-type hook length. We conclude that too-short hooks may be too stiff to function as a junction and too-long hooks may buckle and create instability in the flagellar bundle. Accordingly, peritrichously flagellated bacteria move most efficiently as the distance travelled per body rotation is maximal and body wobbling is minimized. Thus, our results suggest that the molecular ruler mechanism evolved to control flagellar hook growth to the optimal length consistent with efficient bundle formation. The hook-length control mechanism is therefore a prime example of how bacteria evolved elegant but robust mechanisms to maximize their fitness under specific environmental constraints.


Asunto(s)
Flagelos/metabolismo , Salmonella enterica/metabolismo , Proteínas Bacterianas/metabolismo , Movimiento , Mutación/genética , Análisis de la Célula Individual
19.
Biomaterials ; 172: 105-115, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29723755

RESUMEN

The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. Here we have engineered spider silk particles as delivery system for a peptide-based vaccination that leads to effective priming of cytotoxic T-cells. The recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker. Particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated. Particles from hybrid proteins containing a cathepsin-cleavable linker induced a strong antigen-specific proliferation of cytotoxic T-cells in vivo, even in the absence of a vaccine adjuvant. We thus demonstrate the efficacy of a new vaccine strategy using a protein-based all-in-one vaccination system, where spider silk particles serve as carriers with an incorporated peptide antigen. Our study further suggests that engineered spider silk-based vaccines are extremely stable, easy to manufacture, and readily customizable.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Seda/química , Arañas/química , Vacunas de Subunidad/farmacología , Adyuvantes Inmunológicos/farmacología , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Antígenos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Dendríticas/citología , Liberación de Fármacos , Femenino , Humanos , Macrófagos/citología , Ratones Endogámicos C57BL , Ovalbúmina/química , Tamaño de la Partícula , Proteínas Recombinantes/química , Propiedades de Superficie , Linfocitos T Citotóxicos , Distribución Tisular
20.
Oncotarget ; 9(5): 5641-5651, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464024

RESUMEN

Novel adjuvants are needed to increase the efficacy of vaccine formulations and immune therapies for cancer and chronic infections. In particular, adjuvants that promote a strong type I IFN response are required, since this cytokine is crucial for the development of efficient anti-tumoral and anti-viral immunity. Nucleic acid band 2 (NAB2) is a double-stranded RNA molecule isolated from yeast and identified as an agonist of the pattern-recognition receptors TLR3 and MDA-5. We compared the ability of NAB2 to activate innate immunity with that of poly(I:C), a well-characterized TLR3 and MDA-5 agonist known for the induction of type I IFN. NAB2 promoted stronger IFN-α production and induced a higher activation state of both murine and human innate immune cells compared to poly(I:C). This correlated with a stronger activation of the signalling pathway downstream of MDA-5, and IFN-α induction was dependent on MDA-5. Upon injection, NAB2 induced higher levels of serum IFN-α in mice than poly(I:C). These results suggest that NAB2 has the potential to become an efficient adjuvant for the induction of type-I IFN responses in therapeutic immunization against cancer or infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...